skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Suchanek, Figen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Nanoscale materials that contain metallic components can be designed to have excellent light-harvesting capabilities, and can also be used to direct the flow of energy from incident photons into small molecules at or near the surface of metal nanoparticles. One promising route for energy flow is through so-called hot charge carriers, which are optically excited on metal nanoparticles and subsequently transferred to molecules/materials that share an interface with the metal. This article provides an overview of the fundamentals of hot-carrier generation and transfer, discusses both theoretical and experimental means for interrogating these processes, and discusses several potential societally important applications of hot-carrier-driven chemistry to solar fuels and sustainable chemistry. 
    more » « less